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Internal wave reflexion from a sinusoidally 
corrugated surface 
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The reflexion of an internal gravity wave with stream function 

II. = exp { i (hx + lz - wt)} 

from a corrugated surface of the form z = acospx is investigated using an 
extension of Rayleigh's method for an inviscid non-diffusive fluid. It is found 
that the method converges for many wall slopes ap and incoming-wave phase 
propagation incidence angles 8 = tan-l Ilk but that the appropriate series solu- 
tion is only asymptotic in other cases. The accuracy of the calculations is assured 
by requiring that the solution satisfy the boundary condition at  the wall using 
a least-squares error minimization technique. The accuracy is then verified 
through the conservation of energy flux. It is found that, as the surface slope is 
increased for constant 8, less energy appears in specular reflexions and more is 
either back-scattered or redistributed into other forward-scattered modes. As 
the horizontal internal wavelength is decreased to become comparable to the 
corrugation wavelength of the wall, substantially less energy appears in specular 
reflexion, but of the order of 95 % of the incoming energy is specularly reflected 
for 30" < 8 < 60" when the two wavelengths are equal. In  contrast to this, it 
is found that the general level of the ratio of back-scattered to forward-scattered 
energy is reduced by O( as the incident horizontal internal wave- 
length becomes smaller than the corrugation wavelength. The results are com- 
pared with the linear theory of Baines (1971); agreement is good for forward- 
scattered energy and excellent for the back-scattered flux when p > lc. 

to  O( 

1. Introduction 
Internal wave propagation in the ocean is of great interest to the oceanographer 

because these waves provide a mechanism whereby energy and momentum may 
be vertically transported over a depth of several kilometres. For example, lee 
waves generated by the motion of the tides over a rough bottom (Bell 1975; 
Lee & Beardsley 1974) can propagate upwards towards the surface. After im- 
pinging upon the thermocline, they may pass virtually unaltered through it 
only to be totally reflected back downwards by the free surface, or they may be 
almost totally reflected by the thermocline. This latter phenomenon is seen to 
be the case whenever the vertical wavenumber is the order of (or larger than) 
the magnitude of the scale height of the thermocline (Mied & Dugan 1974). 
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Under similar circumstances, a region of horizontal current shear can also 
reflect a substantial amount of wave energy back down towards its region of 
origin (Mied & Dugan 1975). 

On the other hand, internal gravity waves generated in the vicinity of the 
surface - by the action of the wind stress, say - can propagate away from the 
free surface into the deep ocean. There they can be seen to be reflected by the 
bottom topography, but with results that are of a vastly different qualitative 
nature. By employing the method of characteristics and the appropriate radia- 
tion condition, Baines (1971) examines the properties of waves reflected from 
solid, rough surfaces. Specifically, these properties are : 

(i) Back-reflexion. In  addition to the forward-scattered waves present in the 
case of thermoclinefcurrent-shear reflexion, there can exist back-scattered waves 
which propagate energy back along the characteristic on which the incoming 
waves transport energy. 

(ii) Change of horizontal scattered wavenumber. Unlike thermocline/shear 
reflexions, which keep invariant the horizontal wavenumber of incident and 
scattered waves, topographic reflexions alter the horizontal wavenumber of the 
forward- and back-scattered waves. 

The direction of travel of the scattered modes is dependent only upon the 
wave frequency, which is an invariant in this linearized problem. Hence the 
above results mirror the fact that the scattered wavenumbers are algebraic 
combinations of the incident and topographical wavenumbers. 

I n  the present paper, we seek a solution to the problem posed when plane 
internal waves with stream function 

$ = exp {i( [ x + 111 z - wt)}  

in a fluid of constant Brunt-Viiisalti frequency reflect from a rough surface of 

z = acospx. the form 

Making the Boussinesq approximation, assuming only small amplitude internal 
waves, and employing an extension of Rayleigh’s (1945) method to permit 
oblique wave incidence in a non-acoustic application, we have solved this prob- 
lem numerically for arbitrary wall slopes and a variety of ratios of l /k  and pfk. 
The wave field is comprised of the incident wave and an infinite set of reflected 
waves. Much of the reflected wave energy may be carried off in a specular mode,? 
but some of it propagates in higher-order modes, both in the forward direction 
and back towards the direction of the source. The functional representation of 
these scattered waves is an infinite series, and the relative amplitudes of the 
unknown coefficients are obtained by minimizing the error incurred in satisfying 
the boundary condition at many collocation points along the wavy wall. 

The convergence of the series solution is a matter of concern since related 
series solutions in acoustic and electromagnetic wave reflexion have failed to 
converge in some circumstances. As a check on the series convergence rate, an 
independent error criterion, namely the accuracy to which the energy in the 
scattered field is conserved, is monitored. 

t The speoularly reflected wave has wavenumber (lkl, - 111). 
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2. Theory 
The Boussinesq equation governing the stream function for small amplitude 

wave motion in an inviscid non-diffusive fluid is given by Phillips (1966) : 

(1) 
Here, t is time, V2 is the Laplacian in the (x, z )  co-ordinate system, $is the stream 
function related to the velocity in these co-ordinates by u = (u, v) = ( - kZ, @.J, 
and the Brunt-VaisSilSi frequency N(z)  is given by 

where p = p(z) is the density of the rest state. The plane wave 

can be seen to satisfy (1) in the case of constant N 2  provided 

which is the dispersion relation for the wave. 

a2(v2$)/at2 + " y z )  a2$/ax2 = 0. 

N 2 ( 4  = ( -m (WW (2) 

$ = exp{i(lkIx+IZIz-wt)} 

(kl/(k2+12)+ = o/x, (3) 

The group velocity is given by 

As indicated by the dispersion relation (3), these waves are anisotropic, their 
frequency being dependent upon the direction of propagation. In  view of the 
linearity of (l), any reflexion of these waves from a stationary boundary - just 
so long as a linear boundary condition is used - must preserve the frequency of 
the incoming waves. Thus, from (3), we see that phase propagation of the re- 
flected waves is constrained to be along the two directions which are at  angles 

to the + x  axis. These correspond to the directions of forward- and back- 
scattered phase propagation, which must be represented in the stream function 
for the scattered wave field. Accordingly, we express the stream function @ as 
the sum of an incoming wave and scattered waves: 

Clearly, $in must satisfy the equation independently of the scattered wave 
field; hence we take 

$in = exp {i(kx + Zz- wt)} (k, I 3 O), (7) 
+a, 

where the kn and 1, are unspecified as yet. In  view of the equation (4) for the 
group velocity, (7) and (8) are consistent with the radiation condition that 
represents incoming energy, while qbSc contains all of the energy propagating 
away from the reflecting surface. If this reflecting surface is periodic, z = a cospx 
say, then we should expect the scattering coefficient 

R(x, 2) = $sc/@in 

to have period 27r/p also: R(x, x )  = R(x + 27r/p, 2). 
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From (7) and (8), we see that this requires 
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k, - k = np, (9) 
where n is an integer; and, because the frequency is conserved, the dispersion 
relation (3) constrains the magnitude of the ratio of reflected wavenumbers to 

The scattered horizontal wavenumbers k, are thus algebraic combinations of 
the wall wavenumber p and the incoming horizontal wavenumber k. More signi- 
ficant, however, (9) determines along which of the two possible directions the 
scattered waves will propagate. For all modes with n > - k/p ,  the waves are 
forward-scattered and the direction of phase propagation is given by (5a) .  If 
on the other hand n < -k /p ,  the reflected waves are back-scattered, the pro- 
pagation direction being given by ( 5 b ) .  The case n = -lc/p corresponds to a 
vertically propagating wave and is discussed in Q 4. 

If these waves impinge upon a solid impermeable boundary, the normal fluid 
velocity vanishes there, so that for a surface specified by 

be constant: k l l  = /knlznl* (10) 

2 = F ( x ) ,  

7 = z - P ( x )  = 0, or 
the boundary condition is given by 

[ ~ 7 l ~ t l e = F ~ d  = 0. 
In  terms of the stream function, the boundary condition is 

w e  Fs + $ZlZ=FG) = 0- (12) 
The problem is now well defined. The A ,  in (8) must be found by requiring 

that the solution (6) satisfy the boundary condition (12). The magnitude of 
these coefficients is then related to the energy density of each Fourier mode, and 
thus to the associated energy flux of that mode. The energy density of a particular 
wave (Bretherton 1969) is the space-time average of 

E = $ P ( ~ u ~ ~ + N ~ C ~ ) ,  
where 5 is the elevation of an isopycnal from its quiescent or rest position. Con- 
sequently, the value of the temporally, spatially averaged modal energy density 

with the kinetic and potential energies being equal for these small amplitude 
waves. From (4), the average rate at which a particular mode transports energy 

vertically is - 

and the statement that energy must be conserved in the reflexion is thus written 
with the use of (8) by equating the incoming and scattered energy fluxes: 

+ m  

n=- w 
x IZ,(k+n~)~1 IA,[2/[(k+np)2 +Zi]$ = Zk3/(k2+Z2)Q. (13) 

In  the following section, we shall find the An and use (13) as a check on the 
accuracy and convergence of the calculation. 
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3. Method of solution 
Substitution of (6)-(8) into the boundary condition (12) yields 

( - Zap sinpx + k) exp (ila cospx) 
+ m  + C A n [ F - l  Jk +npl up sin (px) + k +np] exp (inpx) exp ( - i l l n /  a cospx) = 0, 

n = - m  

where 

Clearly, functions with many different periodicities arise from products of terms 
like sin (px) exp (inpx) exp (- i/ ln(u cospx). It is not possible to solve for the An 
using orthogonality properties of these periodic functions because they are not 
all harmonics of the same function. We shall therefore find the coefficients by a 
least-squares technique (Dugan 1973). If we put 

f ( x )  = (Zapsinpx-k)exp(ilacospx), 
and 

g , ( x )  = [r-1 Ik+zp] apsinpx +k +np]exp (inpx)exp (--ilZ,/acospx), 

then (14) is equivalent to 
+ w  

n = - m  

+ N  

n= - N  

P ( X )  = C A n g n ( x ) .  

Or, truncating the series, we have 

f ( x )  M Z A n g n ( x ) .  

At some point x = xi, (16) will not in general be satisfied because it is an approxi- 
mation to (15) containing only 2N + 1 terms. In  fact, the error at the point x = xz 

is given by + N  

di = f ( x i ) -  S -4gn(x i )*  
n = - N  

We may solve for the coefficients of (16) by collocating at many points xi and 
minimizing the sum of the squares of the errors by a judicious choice of the An. 
Since the sum of the squares of the errors is 

we see that 

If we presume uniform convergence, we may reverse the order of the sums and 
thus (17) becomes 

Z f N  I 

Z f ( x i ) g m ( x i )  = C C A n g n ( x i ) g m ( x i ) ,  
i= l  n = - N i = l  

which must be satisfied for m = 0,  1, . . . , N .  We now have 2N + 1 equations 
containing 2N + 1 variables. The variables are complex, and here this system is 
solved by using the method of pivotal condensation (Noble 1969). 
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Although any number of collocation points may be used, we shall use multiples 
of 2N + 1 (generally three or four times 2N + 1) because it is found that accuracy 
does not materially improve after that number. Furthermore, it is found that 
for most cases when N 2 9 the coefficient A,  < A ,  or A*l. To provide a more 
quantitative test of this suggested convergence, the r.m.s. error in the approxi- 
mation (16) can be calculated in order to delineate the dependence upon the 
number of equations and the value of the wall slope. The r.m.s. error is approxi- 

mated by + N  2 +  

c = (ijg1 [f(xj)- n = - N  c ~ngn(xj)] ) 3 (18) 

where J is nominally taken to be lO(2N + 1), or ten times the number of equations. 
In  figure 1, B is plotted as a function of the number of equations for several wall 
slopes. Here p/lc = 2, 8 = 60' and ap varies from 0.05 to 0.3. As might be ex- 
pected, the case up = 0.05 seems to converge the most rapidly of all those shown, 
the error B decreasing exponentially with the number of equations. On the other 
hand, it is obvious that, regardless of how many terms in (16) areused to describe 
the case up = 0.3, the sum can never converge. While the case up = 0.05 con- 
verges and ap = 0.3 is clearly divergent, we are led to inquire regarding the 
behaviour of cases of intermediate up, 0.2 and 0.25 say. For ap = 0.2, B continues 
to decrease as the number of equations increases; convergence seems assured, 
but no new insight is gained as the number of equations is increased. For ap = 0.25 
however, the error begins to increase with the thirty-first term in (16); this case 
is clearly asymptotic, and the best approximation to the answer is obtained by 
retaining only 29 terms. 

The series behaviour exhibited in figure 1 is typical of the properties of this 
solution. For any given ap andplk, the r.m.s. error c is a function of the number 
of equations. This sequence of final values e = s(2N+ 1) is observed to possess 
the character of a series of partial sums which is asymptotic. For slopes below a 
certain value, there exists no practical way of distinguishing whether the series 
is asymptotic or convergent, because of the number of terms required to do so. 
Indeed, because this number is frequently too large for the machine, the dis- 
tinction is moot. Our main concern will therefore be the accuracy of the series 
representation of the solution and the conservation of energy in the reflexion 
process. 

In  the case of divergence of the series (15), the moduli of the coefficients A ,  - 
a measure of the reflected energy flux - are seen to remain the same or to in- 
crease as the number of equations is increased. This is clearly incorrect as it 
implies that energy is being created in the reflexion process. With the use of 
(13), the ratio of reflected to incoming energy flux may be expressed as 

and when (14) converges, C is identically unity.? If the series diverges, C is 
found to  be greater than 1.0 i and, in fact, the calculation of AC = /C - 1.01 

the accuracy to which these calculations were performed. t To within a deviation of 
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Number of equations 

FIQURE 1. The r.m.s. error as a function of the number of equations for several wall slopes 
ap. Here p / k  = 2.0, 19 = 60", and the ratio of the number of collocation points to the 
number of equations is four. The points a t  which the r.m.s. error is evaluated are evenly 
spaced along 0 < 5 < 2n/p, and they number ten times the number of equations. 

is found to be a much more sensitive indicator of when the series first begins to 
diverge, as opposed to monitoring B for increasing up or 8. 

As an example of the convergence properties of this series, we plot in figure 2 
regions of convergence and divergence in the up, 8 plane. The region of divergence 
is shaded. The line 8 = cot-1 (up) is shown in this figure also. For all 0 above this 
line, the maximum slope ap of the wall is greater than cot 8, the slope of the 
group velocity wave rays. In this region, we should expect divergence because the 
solution is not valid everywhere above the corrugation. Specifically, there are 
some regions within the troughs of the corrugations which are sheltered, i.e. 
hidden from the source which propagates energy along an incoming wave ray. 
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a?J 

FIGURE 2. A typical plot of the convergentldivergent character of the series when Ray- 
leigh's method is applied to this problem. The region of divergence is shaded and the line 
0 = cot+ ap is plotted; above this line the group velocity wave rays me incident at such 
a shallow angle that they are sheltered by a wall of sufficiently large slope. p / k  = 0.445. 

Since shadowing cannot account for all of the divergent region, some additional 
unknown phenomenon must limit the region of validity of the series solution. 

In  the following section, the implications of the solution for the forward- and 
back-scattered energy fluxes are discussed. Comparison with the linear results 
of Baines (1971) is made and, to  facilitate this comparison, we point out that his 
variables klc ,  I, d and c correspond to k, p ,  a and cot 8 in the present work. It 
also seems appropriate to mention in this regard that his scattered fields conserve 
the energy of the incoming wave to O(u2k2/cot2 8). 

4. Properties of the solution 
As the slope of the wall corrugations is increased, one would expect the re- 

flected energy to exhibit less of a specular character. That is, progressively more 
energy should appear in modes for which n P 0 in (16). In  figure 3, we see that 
this trend is in fact quite pronounced, with the n = k 1 modes having higher 
coefficient moduli than the specularly reflected mode (n = 0) beyond a wall 
slope of about &. For this particular case, 8 = 45" and k /p  = 2-25, so that, accord- 
ing to  (9), only modes for which n < - 3 will be back-scattered. Coincidentally, 
the n = - 3, - 4 modes lie in the range lAnl < and so do not appear in this 
figure. 

A better quantitative impression of the redistribution of energy from the 
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v 
FIGURE 3. The moduli of the A, for - 2  < n < + 5  as a function of wall slope. 0 = 45", 
the number of equations is 25, and the number of collocation points per wall wavelength 
is 75. Because k = 2 . 2 5 ~ ~  the lowest back-scattered mode corresponds to n = -3 ,  and 

< 10-2. 

specularly reflected mode to other modes as ap is increased may be obtained by 
plotting the ratio of specular energy flux to total incoming energy flux r, and 
also the ratio of back-scattered to forward-scattered energy flux r,,. These are 
plotted as a function of ap for several angles in figures 4 (a)  and ( b )  respectively. 
As the wall slope is increased for a given number of equations, the accuracy that 
can be maintained with only 25 equations is decreased. The r.m.s. error defined 
in (18) increases markedly and AC grows to the order of lo-'. I n  this case, the 
curve on the graph is terminated when AC becomes this large; however, e is no 
more than the order of a per cent or so, and the exact value is noted in the figure 
caption. The work of Baines indicates that 

and this is shown in figure 4(a) as a dashed line. In  spite of the fact that only 
three terms are retained in this linear solution, the agreement with the present 
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aP 

FIGURES 4(a, b ) .  For legend see facing page. 



2 69 Internal wave rejlexior, 

1 

1.0. 

0.9 

0.8 

0-7 

0.6 

r8 0.5 

0.4 

0.3 

0.2 

0.1 

0 
10-2 10-1 100 10 

FIGURE 5. A plot of the ratio r, of the specularly reflected to incoming energy flux as a 
function of p/k for 0 = 30°, 45' and 60" (solid lines). ap = 0.1 and k is varied. The number 
of equations is 25 and there are 100 collocation poinbs per wavelength. For the lowest 
value of p / k  plotted, the curves are terminated when AC is of the order of lo-' and the 
r.m.8. error grows to 0.4%. The dashed lines are the results of Baines (1971). 

25-term case is excellent for most of the range of alp. No similar comparison can 
be made in figure 4 ( b )  because, for the value of p / k  employed here, the lowest- 
order back-scattered mode corresponds to n = -3 ,  which would require the 
retention of seven terms to effect a comparison. 

In  the limit of large p / k ,  the horizontal wavelength of the internal wave is 
large with respect to the wall corrugation wavelength. This is the 'smooth 
surface ' reflexion limit and, in this case, we should expect almost all of the energy 
to be specularly reflected. This is the observed behaviour of course, but the sur- 
prising result revealed in figure 5 is that of the order of 95% of the incoming 
energy flux is reflected in the specular mode (for 6' = 30°, 45", SO0) provided only 
that p 2 k. In  the limit of small p /k ,  a substantial amount of reflected energy is 
transferred out of the specularly reflected mode and this is evident from the 
figure. Although we cannot explain the existence of the windows in the vicinity 

FIGURE 4. (a) The ratio r, of specularly reflected to total incoming energy flux for 0 = 30°, 
45" and 60" as a function of wall slope (solid lines). For the largest value of ap plotted, 
AC has grown to O(lO-') and the r.m.s. errors are less than 1.3 x 1.0% and 2.0% 
respectively. p / k  = 0-445; there are 25 equations and 100 collocation points per wall 
wavelength. The dashed lines are the results of Baines (1971). (b)  The ratio rb of back- 
scattered to forward-scattered energy flux for B = 30°, 45O and 60". At the highest value 
of ap on each curve, AC is O(lO-') and the r.m.8. errors are less than 5 x 10-6 %, 0.03 % 
and 0.25% respectively. The graphs are plotted for p / k  = 0.445, while the number of 
equations is 25 and there are 100 collocation points per wall corrugation wavelength. 
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FIQURE 6. The ratio r,, of back-scattered to forward-scattered energy flux aa a function 
of p / k  for 0 = 30", 45' and 60". The wall slope ap = 0.1 and k is varied. There 
are 100 collocation points, 25 equations, and AC < lo-'. Baines' (1971) result agrees 
perfectly with those of the present study when p / k  > 1, but yields no back-scattered 
flux when plk < 1. 

of p / k  = 0.1, we note that the curve is a smoothly varying function of plk .  
Baines' three-term linearized results for r, (also given in figure 4a)  are shown as 
dashed lines. The agreement is excellent over much of the range of p / k ,  and his 
expression also yields a value of p / k  for which no energy appears in the specular 
mode. 

From (S), we see that k, = 0 whenever .n = - p / k ,  and this corresponds to a 
vertically propagating wave. As a particular k, --f 0, however, the A ,  associated 
with it vanishes also, the energy appearing in other modes. The smoothness of 
the curve through these points is an indication of the fact that no singularities 
arise when k, = 0. In  figure 6, the ratio of back-scattered to forward-scattered 
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energy flux is also shown as a function ofplk. For all angles (8 = 30°, 45" and 60') 
it is found that very little energy is back-reflected when p II k. Moreover, the 
peaks of the branches of the curves for p / k  < 1 are of the order of 
smaller than the peaks of the corresponding branches for p / k  > 1. We may con- 
clude, however, that, for the angles shown, virtually no energy is back-scattered 
when the horizontal wavelength of the incoming wave is less than the scale 
length of the wall. Baines' results can be manipulated to yield 

to 

It is interesting to note that here the linear calculation gives a result which plots 
directly over the numerically obtained curve in figure 6 when plk > 1, while 
failing to predict any back-scattering when p / k  < 1. 

5. Conclusion 
We have demonstrated that an extension of Rayleigh's method using a varia- 

tional technique is applicable to the problem of internal wave reflexion from a 
sinusoidally corrugated wall with large slope; and that, for many wall slopes and 
angles of wave incidence, the series will converge. These calculations have been 
verified by computing the energy flux reflecting from the wall and observing that 
it balances the incoming flux. In  so doing, we note that, in all of the cases tested, 
of the order of 90 yo of the incoming energy is reflected from the wall in the specu- 
lar mode as long as the horizontal internal wavelength is greater than the corru- 
gation wavelength of the wall. Moreover, the back-scattered energy flux is 
never more than a per cent or so of the forward-scattered flux for all of these 
cases. 

Perhaps the most significant result of this paper is that the linearized reflexion 
theory of Baines (1971) is surprisingly accurate almost up to the limits of con- 
vergence of the series when used to predict forward-scattered energy flux. Care 
must be exercised when interpreting the results of the linear theory as regards 
back-scattered energy, however. 
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